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ABSTRACT 

Li, Rui. M.S.B.M.E., Purdue University, December 2013. Vibrational Photoacoustic 
Tomography: An Effective Method for Deep Tissue Imaging. Major Professor: Ji-Xin 
Cheng. 
 
 

As a molecular and functional imaging modality, photoacoustic imaging has been 

applied to animals or human organs such as breast, brain and skin. Till now, the contrast 

mechanism of photoacoustic imaging is mainly based on electronic absorption in visible 

and near infrared region. Inherent molecular vibration offers a contrast mechanism for 

chemical imaging in a label free manner. In vibrational microscopy based on either 

infrared absorption or Raman scattering, the imaging depth is limited to the ballistic 

photon mean free path, which is a few hundred microns in a biological sample.  Owing 

to much weaker acoustic scattering in tissues as compared to optical scattering, 

photoacoustic detection of harmonic molecular vibration has enabled significant 

improvement in imaging depth. Broad use of this modality is, however, hampered by 

the extremely low conversion efficiency of optical parametric oscillators at the overtone 

transition wavelengths. My thesis work aimed to overcome such barrier through 

construction of a high-energy Raman laser and proof-of-concept demonstration of 

vibrational photoacoustic tomography.  

 Our Raman laser is based on the process of stimulated Raman scattering in a gain 

medium. The output wavelength of a Raman laser was determined by the pump 

wavelength and Raman shifts of the medium. Using a 5-ns Nd:YAG laser as the pumping 

source, up to 21.4 mJ pulse energy at 1197 nm was generated, corresponding to a 

conversion efficiency of 34.8%. Using the 1197 nm pulses, three-dimensional 

photoacoustic imaging of intramuscular fat was demonstrated (J Biomed Optics 2013). 
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Further, by using a larger Ba(NO3)2 crystal and no prior focusing of input laser, I recently 

constructed a new Raman laser, which could produce stable laser pulses at 1197 nm 

with maximum pulse energy exceeding 100 mJ. Using the new Raman laser, we 

demonstrated proof-of-concept of vibrational photoacoustic tomography with C-H rich 

polyethylene tube phantom placed under 3 cm thick chicken breast tissue (J Phys Chem 

Lett 2013). Furthermore, by modification of a commercial ultrasound machine, 

photoacoustic/ultrasound dual-modality real-time in vivo imaging of biological tissues is 

fulfilled (unpublished). These developments open exciting opportunities of performing 

label free vibrational imaging in the deep tissue regime. 
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CHAPTER 1. INTRODUCTION 

1.1 Photoacoustic Effect 

The photoacoustic (PA) effect, also known as optoacoustic effect, refers to the 

formation of acoustic waves followed by the absorption of light energy, which could be 

in the format of modulated light or pulsed light. In 1880, Alexander Graham Bell first 

observed the sound generation from a solid sample exposed to the modulated sun light. 

1-2 Since then, the photoacoustic effect has been used to measure the light absorption 

spectrum,3 estimate the chemical energies stored in a photochemical reaction4 and so 

on. 

 

1.2 Photoacoustic Imaging in Biomedicine 

In pure optical imaging modalities, imaging depth is limited to millimeter level by 

optical scattering in soft tissues, such as confocal microscopy, second harmonic 

generation (SHG), and coherent Raman imaging. 5-7 Meanwhile, ultrasound scattering in 

biological samples is two to three orders of magnitude smaller than optical scattering, 

which could lead to a better resolution in deep tissues.8 However, pure ultrasound 

imaging is based on detecting mechanical properties of biological tissues, which could 

not provide chemical information of the imaging target. The emergence of 

photoacoustic imaging overcomes the aforementioned problem with high resolution 

images in deep tissue regime. 

Phtotoacoustic imaging is directly developed on the basis of photoacoustic effect, 

which could be considered as an ultrasound imaging modality with light absorption 

contrast. Upon the absorption of non-ionizing ns laser pulses on the biological tissues, 

some of the absorbed energy will be converted into heat, resulting in a tiny local 
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temperature rise, usually in the millikelvin range. Then, the following transient 

thermoelastic expansion will usually travel in the form of ultrasonic waves with MHz 

central frequency, which could be detected by the ultrasonic receivers placed around 

the samples.  Based on time of flight, the spatial information of the sample encoded in 

the ultrasound could be reconstructed. The amplitude of photoacoustic signal is 

proportional to the volume expansion coefficient and the speed of ultrasound, which 

are both temperature dependent for water-based tissues. 

 

1.2.1 Optical Properties of Biological Tissues 

There are three general parameters that describe the interaction of photons 

with biological tissues: absorption of light, scattering of light, and fluorescence emission. 

Optical absorption properties can be applied to quantify hypermetabolism and 

angiogenesis,9-10 while optical scattering properties can uncover architectural 

characteristics of biological samples.11 Optical absorption in biological tissues is 

dependent on the chemical composition. The light absorption by endogenous 

chromospheres in living tissues (including hemoglobin and melanin12-13) is typically 

within the visible spectral region (400 – 700 nm), limiting light penetration to only a few 

millimeters. Meanwhile, above 900 nm, light absorption due to water is increasingly 

higher.14 Light scattering in tissues could be described by the reduced scattering 

coefficient, ' (1 )s s g    , where 
s  is the scattering coefficient and g  is the 

anisotropy factor. Generally, in the visible and near infrared region, 
s  is 100 cm-1 and g 

is 0.9, while the absorption coefficient 
a  is varied between 0.1 and 10 cm-1 in tissues.15 

In deep tissues, multiple scattering results in the loss of directionality. Therefore, 

resolution of pure optical imaging dependent on the ballistic photons will be 

compromised. Accordingly, the imaging depth will be restricted to one photon transport 

mean free path (~ 1 mm). Nevertheless, PA imaging is based on the detection of light 

absorption. Not only ballistic photons, but also diffused photons could contribute to the 
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photoacoustic signal generation. Therefore, deeper imaging regime could be reached 

with higher resolution resulted from less ultrasound scattering in biological tissues.  

 

1.2.2 Traditional Photoacoustic Imaging 

With optical absorption contrast and ultrasonic spatial resolution, photoacoustic 

imaging has been applied to animals or human organs such as breast, brain and skin.16-20  

In PA imaging, pulsed light is used to induce optical absorption inside a tissue by 

diffused photons. Part of the absorbed energy is converted into heat, which raises the 

temperature of the absorbed region on the order of mK. The temperature rise is 

proportional to a tissue-dependent constant, which could be experimentally determined. 

This sudden temperature change then creates pressure transients and subsequent 

generation of photoacoustic waves detectable by an ultrasonic transducer in real time. 

From the measured signal, the distribution of optical absorbers is reconstructed. Till 

now, the contrast mechanism of photoacoustic imaging is mainly based on electronic 

absorption in visible and near infrared region extending up to 950 nm. Photoacoustic 

imaging of hemoglobin21-23 and exogenous contrast agents such as dyes and 

nanoparticles24-27 has been reported. Currently, photoacoustic imaging mainly has three 

implementations: photoacoustic microscopy (PAM), photoacoustic tomography (PAT), 

and photoacoustic endoscopy (PAE). Usually, PAM and PAE can be used to fulfill 

millimeter depth with micrometer resolution, while PAT could reach centimeter imaging 

depth. 

 

1.2.2.1 Photoacoustic Microscopy 

In PAM, both optical excitation and acoustic detection are focused, and the dual 

foci are configured confocally to optimize the imaging performance. In the configuration, 

a two dimensional (2D) scanning stage is usually employed to achieve 3D imaging. The 

lateral resolution is determined by the overlap of the dual foci, while the axial resolution 

is determined by the acoustic time of flight. The imaging depth is mainly limited by the 
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ultrasonic attenuation. The typical configuration of PAM is shown in Figure 1-1 (a).28 The 

laser pulse is focused by an objective for the excitation in the tissue. An optical-acoustic 

beam combiner, composed of two prisms bonding with silicone oil, is located 

underneath the objective. An achromatic correction lens is attached on the top of the 

prism to offset the optical aberration. The ultrasound transducer is placed on the 

surface of another prism to collect generated photoacoustic signals. Based on similar 

experimental setup, multi-wavelength PAM has been used for in vivo label-free 

functional imaging of hemoglobin oxygen saturation in vessels29 (Figure 1-2) and in vivo 

imaging of a subcutaneously inoculated melanoma in an immunocompromised nude 

mouse. 20 (Figure 1-3) 

 

Figure 1-1: Major embodiments of PA imaging.28 (a) Photoacoustic microscopy. (b) 
Photoacoustic tomography. (c) Photoacoustic endoscopy.  
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Figure 1-2: Dual-wavelength (561 nm and 570 nm) optical resolution photoacoustic 
microscopy of hemoglobin oxygen saturation in a living mouse ear.29 
 

 

Figure 1-3: In vivo photoacoustic imaging of a subcutaneously inoculated melanoma in 
an immunocompromised nude mouse.20 (a) Photograph of the melanoma. (b) A 
composite of the two maximum-amplitude projection images. (c) Three-dimensional 
rendering of the melanoma from the data acquired at 764 nm. (d) An enlarged cross-
sectional image of the melanoma. (e) Hematoxylin-and-eosin (HE) stained section at the 
same marked location. 
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1.2.2.2 Photoacoustic Tomography 

In PAT, unfocused laser light is used for excitation, along with unfocused 

ultrasound transducer for PA signal detection. The imaging depth is not limited by the 

ultrasound transducer but is mainly determined by the extent of light penetration.   

Since unfocused light is employed, higher laser energies could be applied to illuminate 

the sample, which will lead to deeper light penetration. In linear-array PAT (Figure 1-1 

(b))28, a multimode fiber bundle is integrated with the ultrasound transducer array for 

optical illumination. Based on a clinical ultrasound imaging system, this methodology 

could be adapted inherently for dual-modality imaging.  Until now, PAT has been greatly 

used to image rat brain lesion in situ 18 (Figure 1-4) and hemodynamics monitoring.19 

(Figure 1-5) 

 

Figure 1-4: PAT imaging of the rat brain lesion in situ.18 (a) Noninvasive PAT image of a 
superficial lesion on a rat’s cerebra acquired with the skin and skull intact. (b) Open-skull 
photograph of the rat cerebral surface acquired after PAT imaging. 
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Figure 1-5: Noninvasive spectroscopic PAT imaging of the total concentration of 
hemoglobin and the hemoglobin oxygen saturation of a rat brain.19 

1.2.2.3 Photoacoustic Endoscopy 

In a representative design (Figure 1-1 (c))28, laser light is delivered by a multimode 

fiber placed in the center hole of a ring ultrasound transducer. Driven by a micromotor, 

an optically and acoustically coupled mirror could rotate for circular scanning. What’s 

more, a linear motor is used for pulling back the probe, in order to fulfill 3D PA imaging. 

Generally, PAE is specially designed, which can be used for imaging internal organs, such 

as esophagus, colon and vessels.30-33 
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CHAPTER 2. VIBRATIONAL PHOTOACOUSTIC IMAGING WITH A RAMAN LASER 

2.1 Introduction 

As a molecular and functional imaging modality, photoacoustic tomography has 

proved the imaging capability of several centimeters deep into biological samples.34-37 

Until now, the majority of the PA imaging studies has been based on electronic 

absorption of molecules and nanostructures. Photoacoustic imaging employing 

molecular overtone vibration as a contrast mechanism opens a new avenue for bond-

selective imaging of deep tissues. In particular, overtones of C-H bond vibration have 

been adopted to visualize lipid and collagen.30, 38-42 In order to resonate with C-H bond 

vibration, laser wavelengths at 1210 nm or 1730 nm are used, where the absorption 

peaks of the second and first overtone reside.43 Currently, the optical parametric 

oscillator (OPO) pumped by harmonics of Nd:YAG laser is employed to generate the 

necessary wavelengths.30, 38-41 However, the conversion efficiency at the 

aforementioned specific wavelengths is very low, making it difficult to generate high 

pulse energy needed for vibrational PA tomography. In addition, the cost of an OPO 

often exceeds that of the pump laser. Therefore, there is a crucial need of a laser system 

with high pulse energy for photoacoustic imaging with CH- bond vibration as the 

contrast.  

 

2.2 Solid-state Raman Laser 

2.2.1 Introduction  

The Raman laser, also called Raman shifter, is based on the process of stimulated 

Raman scattering (SRS) in a gain medium. The output wavelength of a Raman laser is
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determined by the pump wavelength and Raman shifts of the medium. SRS is a 

nonlinear optical conversion process, which could shift the wavelength of a laser light to 

another wavelength. It could occur in gases, liquid, and crystals. Therefore, Raman laser 

could operate on the basis of media with different forms.  

Gases have long been used as the Raman media, mainly due to its low scattering 

losses. The most common gases are H2, D2, and CH4.44-46 However, the large physical size 

and low gain properties limit its applications. Although liquid is also used as the Raman 

gain medium, its toxicity of the materials inherently hinders its achievement.47-49 By 

virtue of their high gain and good thermal and mechanical properties, crystalline 

materials have successfully and greatly used to extend spectral coverage of solid-state 

lasers.50-55 The most promising and commercialized Raman crystals reported in the 

literature are LiIO3, Ba(NO3)2, KGd(WO4)2, and CaWO4.  Their properties are shown in 

Figure 2-1. 56 

 

 

Figure 2-1: Spontaneous Raman scattering parameters of crystals.56 
 

The Ba(NO3)2 crystal is an isotropic material with cubic symmetry. At room 

temperature, the Raman gain coefficient of Ba(NO3)2 crystal is 11 cm/GW, pumped by 

1064 nm Nd:YAG laser. The optical damage threshold is ca. 400 MW/cm2. Its Raman 

spectrum is dominated by a strong peak at 1047 cm –1
 (Figure 2-2)57, which corresponds 
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to the “breathing” mode of the NO3 molecular group.51, 58  Therefore, if the Ba(NO3)2 

crystal is pumped by 1064 nm Nd:YAG laser, 1197 nm laser will be generated based on 

SRS process. Since this wavelength falls in the second overtone absorption peak of CH-

bond vibration, it will provide us great potentials to perform photoacoustic tomography 

imaging in deep tissue.  

 

 

Figure 2-2: Spontaneous Raman spectra of Ba(NO3)2 crystal.57 
 

2.2.2 Experimental Setup 

 

 

Figure 2-3: Schematic of the Raman laser based on Ba(NO3)2 crystal. M1, M2, and M3: 
45° 1064 nm reflective mirror. PBS: polarizing beam splitter. HWP: half wave plate. QWP: 
quarter wave plate. M4: resonator end mirror. M5: output coupler. M6: silver mirror. 
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A schematic of our setup is shown in Figure 2-3. The Ba(NO3)2 crystal was 

pumped  by a Q-switched Nd:YAG laser (Continuum Surelite SL III-10) operated with a 10 

Hz repetition rate and 5 ns pulse duration (FWHM). A polarizing beam splitter (PBS) was 

used to purify the polarization of the fundamental 1064 nm laser light. A half-wave plate 

(HWP) and a second PBS were combined and used as a variable attenuator to adjust the 

pump pulse energy. A telescope composed of two positive lenses was employed to 

reduce the pump beam size to match the dimensions of the Ba(NO3)2 crystal. For the 

Raman laser, a flat-flat resonator with a cavity length of about 10 cm was used. The 

resonator end mirror (M4) was coated with high reflectivity at 1197 nm (R> 99%). The 

output coupler (M5) was coated with high reflectivity at 1064 nm (R>99%) and 40% 

transmission at 1197 nm. The Ba(NO3)2 crystal, with dimensions of 4×4×38 mm3, was 

coated with high transmission at 1064 nm and 1197 nm on both faces. 

 

2.2.3 Characteristics of the Raman Laser 

 

 

Figure 2-4: Characteristics of the Ba(NO3)2 crystal-based Raman laser. (a) Spectral profile 
of the Raman laser output. (b) The 1st Stokes energy as a function of the pump energy 
incident on the Raman crystal. Red solid line is a linear fit. (c) Conversion efficiency with 
respect to the pump intensity incident on the Raman crystal. (d) Pulse energy of Raman 
laser as a function of time. 
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Performances of the Raman laser are shown in Figure 2-4. The spectral profile of 

the Raman laser output, measured by the USB 2000 spectrometer (Ocean Optics), 

indicates the central wavelength of ca. 1197.6 nm (Figure 2-4 (a)). The maximum pump 

energy was limited to 60 mJ by crystal damage threshold, with maximum output pulse 

energy measured to be 21.4 mJ, corresponding to a slope efficiency of 45.4% (Figure 2-4 

(b)). The key parameter, conversion efficiency, was defined as the pulse energy of the 

Raman laser divided by the pulse energy of the pump laser incident on the Ba(NO3)2 

crystal. As shown in Figure 2-4 (c), the maximum conversion efficiency is about 34.8%, 

which is much larger than 0.5%, the efficiency for the OPO system we used before 

(Panther EX Plus, Continuum). The threshold for the 1st Stokes Raman laser was 

measured to be 11.6 MW/cm2. The discrepancy between the experimental value and 

the theoretical value (6.1 MW/cm2) may arise from the optical losses resulted from 

deflection and diffraction.  Variation of the 1st Stokes output energy obtained with 60 

mJ pump energy (incident on the crystal) were plotted up to 1.5 hours, as shown in 

Figure 2-4 (d). The maximum pulse energy drop was 12%, which may be caused by the 

fluctuation of the pump Nd:YAG laser (6%) and instability of the cavity.  

 

2.3 Vibrational Photoacoustic Microscopy Based on a Raman Laser 

2.3.1 Experimental Setup 

Although 1197 nm locates in the second overtone absorption range of CH-bond, 

it is not the peak absorption wavelength. Therefore, it is necessary to check its 

photoacoustic imaging capability of CH-bond rich samples. Herein we demonstrate for 

the first time the use of aforementioned Ba(NO3)2 crystal-based Raman laser for 

vibration-based PA microscopic imaging. The imaging setup is shown in Figure 2-5. The 

1197 nm Raman laser was directed into an inverted microscope (IX71, Olympus) for PA 

imaging. An achromatic doublet lens (30 mm focal length, Thorlabs) was applied to 

focus the Raman laser on the samples. The PA signals were detected by a focused 

ultrasonic transducer (V317, Olympus NDT), followed by a preamplifier (5682, Olympus 

NDT) and a pulse receiver (5073 PR-15-U, Olympus NDT). The collected PA signals were 
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then sent to a digitizer (USB-5133, National Instrument), and retrieved via a customized 

LabVIEW program. To perform 3D vibrational PA imaging, an XY translational stage 

(ProScan H117, Prior) was employed for raster scanning of samples. 

 

 

Figure 2-5: Schematic of a photoacoustic microscope equipped with a Ba(NO3)2 crystal-
based Raman laser. PC: Computer. 
 

2.3.2 Result and Discussion 

Intramuscular fat was em  o ed to demo  t  te the         t  of the   m   

   e  fo      m     .  he m    e   m  e    h  h  e e   t   to            mm3 pieces, 

were harvested from a goat and then preserved in fixative 10% buffered formalin. The 

small muscle piece was then placed in a glass bottom dish and embedded with H2O-

agarose gel for the subsequent PA imaging. With the pulse energy of 60 µJ on the 

sample, PA imaging of intramuscular fat was conducted, as shown in Figure 2-6. On-

resonant and off-resonant PA images are shown in Figure 2-6 (a-b). A strong signal was 

found at 1197 nm and the contrast nearly disappeared at 1064 nm. These data 
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demonstrate that PA signal is generated from the C-H bond overtone vibration of lipid. 

This lipid imaging capability was further confirmed by histological examination of the 

same tissue (Figure 2-6 (c)), where the same morphology of fat (white color) was 

observed. On the same setup, we further demonstrated 3D PA imaging of intramuscular 

fat (Figure 2-6 (d)), with an axial resolution of 110 µm, a lateral resolution of 60 µm and 

an imaging depth of ~ 3 mm. 

 

 

Figure 2-6: PA imaging of intramuscular fat performed with the Raman laser. (a) En face 
maximum intensity projection PA image of intramuscular fat sample with 1197 nm 
excitation. (b) En face maximum intensity projection PA image of intramuscular fat 
sample with 1064 nm excitation. (c) Histological evaluation of the same intramuscular 
fat sample. (d) Three-dimensional PA image of a separate intramuscular fat sample. 
    e e e   : 6  μJ. Im  e   ze:  2   2    xe  . 

 

2.3.3 Conclusion 

In conclusion, we demonstrated PA imaging of lipids with a compact Ba(NO3)2 

crystal-based Raman laser. Up to 21.4 mJ pulse energy at 1197 nm was produced, 
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corresponding to the conversion efficiency of 34.8%.  The high conversion efficiency of 

the Raman laser would enable vibrational PA tomography by using a larger Ba(NO3)2 

crystal to endure larger incident pulse energy and generate 100 mJ pulse energy at 1197 

nm (currently under progress). Notably such energy is considered to be safe for human 

studies according to the American National Standard (Z136.1 – 2000). PA tomography 

with overtone vibration as contrast is expected to open new opportunities for bond-

selective imaging of biological tissues with an imaging depth and field of view both on 

the centimeter scale. 

 

 

 

2.4 Vibrational Photoacoustic Tomography with a Single Element Transducer 

2.4.1 Principles 

As a molecular and functional imaging modality, photoacoustic tomography has 

proved the imaging capability of several centimeters deep into biological tissues. In PAT, 

pulsed light is used to induce optical absorption inside a tissue by diffused photons. Part 

of the absorbed energy is converted into heat, which raises the temperature of the 

absorbed region on the order of mK. This sudden temperature change then creates 

pressure transients and subsequent generation of photoacoustic waves detectable by 

an ultrasonic transducer in real time. From the measured signal, the distribution of 

optical absorbers is reconstructed. Till now the contrast mechanism in PAT is mainly 

based on electronic absorption in near infrared region extending up to 950 nm. PAT 

imaging of hemoglobin21-23 and exogenous contrast agents such as dyes and 

nanoparticles24-27 has been reported. Inherent molecular vibration offers a contrast 

mechanism for chemical imaging in a label free manner. In vibrational microscopy based 

on either infrared absorption or Raman scattering, the imaging depth is limited to the 

ballistic photon mean free path, which is a few hundred microns in a biological sample.  

Owing to much weaker acoustic scattering in tissues as compared to optical scattering, 

photoacoustic detection of harmonic molecular vibration has enabled significant 
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improvement in imaging depth.30, 38-39 In this method, optical absorption is induced by 

overtone transitions at near infrared wavelengths, such as the second overtone 

transition of C-H bond occurring around 1200 nm.59 Upon excitation, this vibrational 

energy quickly turns into heat, which leads to bond-selective photoacoustic signals. 

Overtone transitions have been used for intravascular photoacoustic imaging of lipid 

accumulation.30, 41 In these studies, focused high-frequency ultrasonic transducers were 

used. The transducer was moved along a line or rotated about its own axis, and the PA 

signals were required from the focused region. The image was then built by converting 

time into distance according to the speed of sound and signal amplitude into a color 

map. The image depth with a focused transducer was limited to its focused region, 

generally on the millimeter scale. Further, the imaging configuration, which is similar to 

PA microscopy, was limited to thin samples. Therefore, less energy per pulse 

illumination was required, which was possible through the use of existing laser sources. 

Despite these advances, vibrational photoacoustic tomography, abbreviated as 

VPAT hereafter, is not yet demonstrated. Tomography uses an unfocused transducer 

along with the unfocused light and is capable of obtaining centimeter scale depth 

information. A technical challenge for VPAT is the unavailability of a laser source having 

sufficient energy for diffused photon excitation of the entire object. The optical 

parametric oscillator currently used for PAT has been designed for excitation of 

hemoglobin and other contrast agents in wavelength below 950 nm. Specifically, using a 

Nd:YAG laser as the pump source, the wavelengths above 1064 nm are provided by the 

idler beam of the optical parametric oscillator at very low conversion efficiency. 
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Figure 2-7: Signal generation and detection in VPAT. v = 0, 1, 2, and 3 denote ground 
and excited vibrational states. 
 

Figure 2-7 shows the overtone vibrational absorption and photoacoustic wave 

generation processes. Vibrational absorption takes place when the incident photon 

frequency matches a transition frequency between the vibrational states (v). The (n-1)th 

overtone absorption takes place by transition from v = 0 to v = n, with n = 2, 3.... Unlike 

microscopy, in VPAT, the entire object is irradiated by the laser. Both the scattered and 

non-scattered photons contribute to the overtone absorption and subsequent 

generation of PA waves. Since the imaging depth is primarily determined by how deep 

the light can reach in a given sample, pulse energy of tens of mJ or more is required for 

an object of few cubic cm in size. 

 

2.4.2 Theoretical Simulation 

To evaluate the effect of scattering and absorption on VPAT imaging depth, we 

estimated the photon energy density in deep tissue at 1200 nm by Monte Carlo 

simulations60 and compared it to that at 800 nm, where PAT imaging of blood is often 

performed. For the simulation, we considered a tissue with two layers, dermis of 
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thickness 0.4 cm and subcutaneous tissue of varying thickness from 0 to 2.6 cm.  Tissue 

optical parameters such as absorption and scattering coefficients were obtained from 

reference61 and a refractive index of 1.4 was assumed. The simulated energy density 

versus the depth is given in Figure 2-8. It is seen that at 3.0 cm depth, the light fluence is 

reduced by ~8 orders of magnitude, suggesting the need for high energy laser to 

perform VPAT. Moreover, it is noted that the fluence for 1200 nm at 2.0 cm depth is 5 

times higher than that for 800 nm. Such enhancement is due to lower scattering 

coefficients at longer wavelengths. Since the PA signal is proportional to light fluence, 

this result indicates that 1200 nm excitation is beneficial for deep tissue vibrational 

imaging.  

 

 

Figure 2-8: Energy density (fluence) versus depth by Monte Carlo simulation on a tissue 
  th   de m      e  (μa=0.11cm-1  μs'=2.18cm-1  t 8    m & μa=0.13 cm-1  μs'=1.65 cm-1 at 
 2    m)   d        t  eo      e  (μa=1.07 cm-1  μs'=11.6 cm-1  t 8    m & μa=1.06 
cm-1  μs'=7.91cm-1 at 1200 nm). 
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2.4.3 Experimental Setup and Performance of the Raman Laser 

Schematic of our Raman laser is given in Figure 2-9 (a). An 1064 nm Nd:YAG laser 

beam with 5 ns pulse width and 10 Hz repetition rate, after deflection by mirrors M1 and 

M2, passes through a polarizing beam splitter (PBS) to purify the polarization. Then it 

passes through a half wave plate and a second PBS. This combination is used to adjust 

the input pulse energy to obtain the desired output. After deflection by mirrors M3 and 

M4, the beam enters into the cavity through a quarter wave plate, which protects the 

Nd:YAG laser from perturbation by backscattered light. The laser cavity contains a 

Ba(NO3)2 crystal with size of 8880 mm3 placed between mirrors M5 and M6. These 

mirrors were coated such that M5 has high reflectivity at 1197 nm and high transmission 

at 1064 nm and M6 has high reflectivity at 1064 nm and 40% transmission at 1197 nm. 

 

 

Figure 2-9: Setup and performance of the Raman laser. (a) Schematic; (b) Output 
spectral profile measured by a USB2000 spectrometer; (c) Output energy versus the 
input; (d) Output energy versus time. PBS: polarizing beam splitter. HWP: half wave 
plate. QWP: quarter wave plate. 
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The Raman laser outputs pulses with a narrow spectrum centered at 1197 nm as 

given in Figure 2-9 (b). Performance of the laser was tested by measuring the output 

energy versus the input energy. Also, the energy was monitored as a function of time to 

examine the long term stability. The plot of the output versus the input energy is given 

in Figure 2-9 (c). It is seen that, the output energy varies linearly with the input in the 

range from 50 to 290 mJ. With the input energy of 290 mJ, an output of 105 mJ was 

obtained at 1197 nm, corresponding to a conversion efficiency of 36%. Such efficiency is 

higher than current optical parametric oscillator technology by ~100 times at the 

specified wavelength. The Raman laser showed high stability over a time period of 1.5 hr 

as seen in Figure 2-9 (d). This stability is important to acquire high quality tomography 

images. 

 

2.4.4 Experimental Setup of VPAT with a Single Element Transducer 

 

 

Figure 2-10: Schematic of VPAT system.  A single transducer rotating around the object 
was used to collect the PA signal. 
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Schematic of our VPAT imaging system is given in Figure 2-10. The 1197 nm laser 

output from the Raman laser delivering high energy pulses at 10 Hz was used to 

irradiate the sample. These laser pulses pass through the center hole of a computer 

controlled rotational stage before reaching the sample. An unfocused 10-MHz, 2-mm 

diameter ultrasonic transducer (XMS 310, Olympus NDT) attached to the rotational 

stage was used to receive the PA signal. The transducer and the sample were placed 

inside a water tank to provide acoustic coupling between them. The transducer output 

was connected to a 20 dB preamplifier followed by a pulser/receiver (5072PR, 

Panametrics NDT) with gain of 20 dB. Then it was sent into a data acquisition (DAQ) card, 

which was triggered by the Q-switch of the Nd:YAG laser. During imaging, the rotational 

stage was moved in steps around the sample in a circular path of radius 4.5 cm and the 

PA signal was acquired for each step until one complete revolution. A LabVIEW program 

was used to control the rotational stage and collect the data. 

 

2.4.5 Cell Viability Test 

In our VPAT experiments, depending upon the sample size, laser fluence up to 100 

mJ/cm2 was used for irradiation. Although this energy is below the limit set by ANSI 

safety standards for the laser wavelength used, it is desirable to study whether the laser 

pulses pose any serious harm to the cells in the tissues.62 Therefore, we performed a 

standard cell viability test using six well plates containing cultured human prostate 

cancer PC3 cells. Three of them were irradiated for 30 sec by 1197 nm laser pulses with 

100 mJ/cm2  energy density. Immediately after irradiation, cells were stained by calcein 

and propidium iodide for 15 min and then imaged on a confocal microscope. Number of 

damaged cells and viable cells were counted, based on the staining by propidium iodide 

and calcein, respectively. Typical micrographs of control and irradiated cells and the 

average cell viability for each group are given in Figure 2-11. 
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Figure 2-11: Results of cell viability test. (a) Confocal fluorescence microscopy images 
(Green: calcein, red: propidium iodide) of control prostate cells and the prostate cells 
irradiated with 100 mJ/cm2 density laser pulses at 1197 nm. (b) Viability of control and 
irradiated cells. Cell viability was calculated by dividing the number of viable cells with 
the total number of cells in each well. 
 

2.4.6 Result and Discussion 

A phantom made of a polyethylene tube was used to demonstrate the proof-of-

concept of VPAT. The tube has an outer diameter of 1.0 mm and an inner diameter of 

0.6 mm. This material was selected because it is rich in C-H bonds, which is evident in 

the PA spectrum of polyethylene given in Figure 2-12 (a). In the spectral window shown 

here, there are two bands, one peaked at ~ 1200 nm and the other peaked at ~ 1440 nm. 

The first band centered at 1200 nm corresponds to the second overtone absorption of 

C-H bond stretching vibration. The wavelength of the Raman laser used in this study is 

within this absorption band. To explore the imaging depth limit, we performed one-

dimensional PA measurements on a 3 mm long polyethylene tube sample. Fresh chicken 

breast tissue layer was placed above the sample to mimic the in vivo situation. Laser 

energy of 57 mJ/cm2 was sent to the sample through the chicken tissue layer. The layer 
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thickness was varied and the corresponding PA signal from the sample was measured. 

Then, the peak to peak amplitude of the PA signal was estimated. The plot of which is 

given in Figure 2-12 (b). It shows a variation of more than three orders of magnitude in 

PA amplitude over 3 cm thickness range. The pattern of the plot follows a linear 

 e  t o  h       o      e  h  h     e  o    e    ed o  the Bee ’     . It  ho  d  e  oted 

that, even for a thickness of 3 cm, we could obtain signal from the target with a signal to 

noise ratio of 2.5 as shown Figure 2-12 (c). To obtain this data at 3 cm depth, we 

performed an average of 100 pulse excitations and a group of 20 data sets were taken 

and then averaged. For other depths, due to higher signal to noise ratio, averages of 

smaller number of pulses were carried out. Since part of the light was absorbed by the 

chicken tissue, there was also PA signal emanated from it, as marked in Figure 2-12 (c). 

The chicken tissue was placed at a distance from the polyethylene tube, so that we 

could easily separate the two PA signals based on the time delay. 

 

 

Figure 2-12: VPAT imaging of a polyethylene tube placed under a chicken breast tissue. 
(a) PA spectrum of polyethylene;  (b) PA signal amplitude versus chicken layer thickness; 
(c) PA signal with 3 cm thick chicken breast layer;  (d) VPAT image of a polyethylene tube 
ring placed under a 5 mm chicken breast tissue. 
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Two dimensional VPAT imaging was performed with a phantom made out of the 

same polyethylene tube. Two ends of a piece of the tube were joined together by using 

an epoxy to form a ring shape. The ring was then placed approximately at the center of 

the circular path of the transducer by gluing it on a glass tube with epoxy. A 5 mm thick 

chicken breast layer was placed at a distance of 5 mm above the ring. Pulses from the 

Raman laser set at 80 mJ with a beam diameter of 1.0 cm irradiated the chicken tissue 

and illuminated the ring. The transducer was rotated in steps of 2° and the PA signal was 

collected for each step at a rate of 100 kHz, until a complete revolution. Ten pulses were 

averaged for each measurement. It took about 10 minutes for acquisition of a complete 

set of data. The image was then reconstructed using a modified back projection 

algorithm.63 An image of the polyethylene ring obtained from the VPAT system is given 

in Figure 2-12(d). The image showed a good contrast with undetectable background 

contributed by water at the wavelength of 1197 nm. 

 

2.4.7 Conclusion 

 In summary, we have demonstrated a vibrational photoacoustic tomography 

imaging system enabled by a high energy Raman laser at 1197 nm. Using this system, we 

have obtained vibrational photoacoustic signal from C-H rich polyethylene tube placed 

below 3 cm chicken breast tissue with input laser pulse energy well below the ANSI 

safety limit. VPAT image of polyethylene tube placed under 5 mm chicken tissue was 

achieved with excellent contrast. We note that the single element system in this study is 

slow in data acquisition as compared to linear array transducer being used for PAT or 

ultrasound imaging. Future work will focus on using linear arrays and commercially 

available ultrasound machine for in vivo imaging. 
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2.5 Vibrational Photoacoustic Tomography with Transducer Array 

Proof-of-concept of vibrational photoacoustic tomography has been demonstrated 

with a homebuilt Raman laser generating greater than 100 mJ of energy per pulse at 

1197 nm wavelength. In our preliminary studies, a single element transducer was used 

to record generated photoacoustic signal. Although its signal quality is good, the slow 

imaging speed caused by transducer scanning restricts its applications from bench to 

bedside. 

2.5.1 VPAT in Free Space 

 

 

Figure 2-13: Vevo 2100 system. FUJIFILM VisualSonics Inc. 
 

In collaboration with Dr. Craig Goergen at Weldon School of Biomedical 

Engineering at Purdue University, we built a vibrational photoacoustic tomography 

imaging system based on Vevo 2100 ultrasound machine. The Vevo 2100 system 
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(FUJIFILM VisualSonics Inc.) is a high-frequency, high-resolution imaging platform with 

linear array technology. (Figure 2-13) The schematic of our VPAT imaging system is 

shown in Figure 2-14. The 1197 nm Raman laser pumped by the fundamental light of 

Nd:YAG laser directly illuminates the sample, which is immersed in a water tank filled 

with tapping water. The MS 550 transducer with 40 MHz central frequency is located 

exactly above the sample. In order to avoid impedance mismatch, the transmitting end 

of the transducer is also immersed into water. Since polyethylene ring is rich of CH-bond, 

it is used as the phantom to generate PA signal at 1197 nm. The image is shown in 

Figure 2-15. The left one is ultrasound image, while the right one is photoacoustic image. 

In the experiment, 70 mJ pulse energy at 1197 nm is applied to illuminate the ring, while 

the imaging depth could reach to 1.2 cm. Here, the imaging depth is not limited by light 

attenuation in the water, but by the small illumination area of the light. 

 

 

Figure 2-14: Setup of VPAT system in free space with a high pulse energy Raman laser 
based on Ba(NO3)2 crystal 
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Figure 2-15: VPAT images of polyethylene tube. 
 

2.5.2 VPAT with Optical Fiber Bundle 

 

 

Figure 2-16: Schematic of VPAT system with integrated fiber bundle and transducer 
array. 
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Although VPAT imaging system in free space could get good signal, it is not 

convenient for use in hospital. In order to make it more compact and flexible, an optical 

fiber bundle with 60 % transmission at 1197 nm is integrated with the ultrasound 

transducer. In our preliminary studies, the fiber bundle is stabilized with the transducer 

using by electric tape. The whole VPAT system is shown in Figure 2-16. The transducer is 

stabilized by a stage, which can be used for 3D scanning. Based on this platform, we 

performed PA imaging of normal liver and fatty liver harvested from mice (Figure 2-17). 

The samples are put in ultrasonic gel for acoustic match. The central frequency of 

transducer (MS 250) is 16 MHz, and the pulse energy of the laser is 60 mJ. From 

ultrasound image (Figure 2-17 (a)), we could see both of them clearly. However, in PA 

image averaged 100 times (Figure 2-17 (b)), we could only see fatty liver which is rich of 

CH-bond.  

 

 

Figure 2-17: Ultrasound and photoacoustic images of liver samples from mice. (a) 
Ultrasound image of mice liver. (b) Photoacoustic images of mice liver. 
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CHAPTER 3. FUTURE WORK AND CONCLUSIONS 

3.1 Future Work 

 

Abdominal aortic aneurysm (AAA) is a complex disease defined as the pathologic 

dilation of the vessel wall. Clinically, an aortic diameter 150% larger than normal is 

considered diseased,64 although most AAAs are asymptomatic and only surgical 

treatment options currently exist. Anywhere between 5% and 10% of people in the 

industrialized world over the age of 65 suffer from AAAs,65-66 accounting for roughly 

16,000 deaths and 150,000 inpatient hospitalizations per year in the United States.67-68  

Although basic science and clinical studies have led insight into the problems associated 

with AAAs, a detailed understanding of the underlying mechanisms that lead to AAA 

development and expansion still remains incomplete. Mouse models of AAAs instigated 

by genetic and chemical induction have provided insight into potential mechanisms for 

the development of the disease. Systemic infusion of angiotensin II (AngII) into 

apolipoprotein E-/- (apoE-/-) mice has been shown to lead to atherosclerosis and 

suprarenal abdominal aortic aneurysms.69 In the aorta, there is a mixture composed of 

lipid, collagen, and elastin. Understanding the underlying makeup of the aortic wall will 

play an important role in aneurysm expansion.  

Vibrational photoacoustic imaging has shown the capability to map lipid 

distribution in the biological samples using a single wavelength.70 Furthermore, lipid and 

collagen can be distinguished by multispectral photoacoustic imaging of the first 
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overtone of CH-bond,71 which provide us an opportunity to image the composition of 

AAA disease.  

To fulfill this aim, firstly, based on our existing VPAT platform, we will perform 

photoacoustic and ultrasound imaging to map lipid distribution in AAA using apoE-/- mice 

model in vivo. Then, we will build a chemically-selective multispectral dual-modality 

photoacoustic and ultrasound imaging system capable of quantifying signal from fat, 

collagen in small animals. A customized high-energy Nd:YAG pumped optical parametric 

oscillator will be used as the irradiation source, in combination with Vevo 2100 system 

to acquire photoacoustic signal over  a range of excitation wavelengths. To ensure 

statistical significance, 40 apoE-/- mice (B6.129P2-Apoetm1Unc/J, Jackson Laboratories, Bar 

Harbor, ME) will be implanted with AngII (A9525, Sigma-Aldrich, St. Louis, MO) filled 

osmotic pumps (model 2004, Durect Corporation, Cupertino, CA).69 These pumps 

release AngII at a rate of 1000 ng/kg/min over 28 days. We will also infuse pancreatic 

porcine elastase (E1250, Sigma-Aldrich) at a pressure of 100 mmHg into the infrarenal 

aortas of 40 Sprague Dawley rats (Harlan Laboratories, Indianapolis, IN). Twenty 

additional apoE-/- mice will be implanted with saline filled pumps and used as healthy 

controls. Similarly, a control group of twenty Sprague Dawley rats will be infused with 

heat-inactivated elastase. Imaging with the photoacoustic system will be done before 

AAA induction and on days 3, 7, 14, 21, and 28. Photoacoustic images will be acquired 

that can noninvasively characterize aortic wall composition in multiple experimental 

AAA models. In addition, we expect our histological analysis to confirm the composition 

of the arterial wall. 

What’s more, VPAT imaging of human atherosclerotic arteries will be performed 

to characterize its chemical composition. Firstly, agrose gel-based phantom will be made 

to mimic the tissue scattering properties.72-73 Then, human atherosclerotic arteries will 

be immersed into the gel for photoacoustic imaging in vitro.  
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3.2 Conclusion 

 

With optical absorption contrast and ultrasonic spatial resolution, photoacoustic 

(PA) tomography has been applied to animals or human organs such as breast, brain and 

skin. In the past, the majority of the PA imaging studies has been based on electronic 

absorption of molecules and nanostructures. Photoacoustic imaging employing 

molecular overtone vibration as a contrast mechanism opens a new avenue for bond-

selective imaging of deep tissues. In particular, overtones of C-H bond vibration have 

been adopted to visualize lipid and collagen. In order to resonate with C-H bond 

vibration, laser wavelengths at 1210 nm or 1730 nm are used, where the absorption 

peaks of the second and first overtone reside. Currently, the optical parametric 

oscillator (OPO) pumped by harmonics of Nd:YAG laser is employed to generate the 

necessary wavelengths. However, the conversion efficiency at the aforementioned 

specific wavelengths is very low, making it difficult to generate high pulse energy 

needed for vibrational PA tomography. In addition, the cost of an OPO often exceeds 

that of the pump laser. 

To overcome such a barrier, we describe an approach to address the 

aforementioned barriers by efficiently shifting the wavelength of a Nd:YAG laser with a 

homebuilt solid-state Raman laser. Using a 5-ns Nd:YAG laser as the pumping source, up 

to 21.4 mJ pulse energy at 1197 nm was generated, corresponding to a conversion 

efficiency of 34.8%. Using the 1197 nm pulses, three-dimensional photoacoustic imaging 

of intramuscular fat was demonstrated to verify the feasibility and capability of the 

Raman laser. 

By using a larger Ba(NO3)2 crystal and no prior focusing of input laser, our new 

Raman laser is able to produce stable laser pulses at 1197 nm with maximum pulse 

energy exceeding 100 mJ. Based on the new laser system, vibrational photoacoustic 

tomography signal from C-H rich polyethylene tube phantom placed under 3 cm thick 

chicken breast tissue was obtained with a signal to noise ratio of 2.5. Further, we 
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recorded photoacoustic image of a polyethylene ring placed under 5 mm chicken tissue 

with excellent contrast. Although its signal quality is good, the slow imaging speed 

caused by transducer scanning restricts its applications from bench to bedside. 

At last, in collaboration with Dr. Craig Goergen at Purdue University, we built a 

vibrational photoacoustic tomography imaging system based on Vevo 2100 ultrasound 

machine, which could fulfill photoacoustic and ultrasound imaging in real time.  VPAT 

imaging of polyethylene ring is performed in free space to demonstrate its feasibility. By 

integrating with a fiber bundle, a more convenient and compact VPAT platform is built. 

Normal liver and fatty liver of mice are used to demonstrate its capability to image lipid 

composition in biological samples. 
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